MAGNETIC EFFECT OF ELECTRIC EFFECT

AND MAGNETISM

1) A closed loop PQRS is lying in a magnetic field B as shown in the following figure.

S
R

The loop caries a current I and total length L. Find the magnitude of magnetic force acting on each side of the loop.
$\left(F_{P S}=F_{Q R}=\frac{\sqrt{3}}{8} B I L ; F_{P Q}=F_{S R}\right)$
2) A magnet was found to vibrate at a place with a time period of T.A piece of brass of same length ,breadth and mass wasplaced overthe magnet.What will be the new time period?
($\mathrm{T}=2 \pi \sqrt{\frac{l}{M}}$)
3) A hypothetical barmagnet $A B$ is cut into t wo equal parts.One part is now kept over the other as shown. If M is the magnetic moment of the original magnet, what would be the magnetic moment of the following combinations so formed?

2
(i)

4) Identify the magnetic material which follows the graphical representation given below.Also locate any two inferences about the behavior of the material from the graph.

5) Identify the magnetic materials from the following curves.

6) A hypothetical barmagnet $A B$ is cut into t wo equal parts.One part is now kept near/over the other as shown. If M is the magnetic moment of the original magnet, what would be the magnetic moment of the following combinations so formed?

(i)

N	S
N	S

(iii)
7) A circular loop and a long wire are camying currents $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$ respectivelly as shown.

The distance between the centre of the loop and long wire is $2 r$, where r is radius of the loop.If $\mathbf{l}_{\mathbf{2}}=1 \mathrm{~A}$, find out the value of $\mathbf{I}_{\mathbf{1}}$ when the net magnetic field at the centre of the
loop is zero.

$$
\left(\mathrm{l}_{1}=1 / 2 \pi \mathrm{~A}\right)
$$

8) Nimala recordsthe following data for the magnitude B of the magnetic field at axial points at different distances ' x ' from the centre of a circ ular coil of radius ' r ' carming a current ' l ' . Verify for, any two, that these observations are in good a greement with the expected theoretical variation of B with ' x '.

$X \longrightarrow$	$X=0$	$X=r$	$X=2 r$	$X=3 r$
B	B_{0}	$0.25 \sqrt{2} \mathrm{~B}_{0}$	$0.039 \sqrt{5} B 0$	$0.010 \sqrt{10} \mathrm{~B} 0$

9) Identify the magnetic material corresponding to the following curves
(1)

(2)

10) Two co-axial circular loops C_{1} and C_{2} of radii 5 cm and 7 cm are placed asshown. What should be the magnitude and direction of the current in the loop C_{2} so that the net magnetic field at the point O be zero?

11) A conductor when thermally heated possess large number of freely moving electron,even then no magnetic field is experienced nearsuch a conductor.What do you conclude?
(Electrons move randomly on account of themal energy. Magnetic field due to random moving electronscancel out each other.So no magnetic field is experienced near a conductor in which no net curent flows)
12) Net charge within a current carrying conductor is zero. State whether it experiences a force or not when placed in a magnetic field?
(In a current camying conductor, free electrons move with drift velocity while positive ions rema ins at rest. Free electrons
experiencesa magnetic force while positively charged ionsat rest does notexperience magnetic force.)
13)

Suppose a helical metallic spring is suspended from the roof and a very small weight is attached to its lowerend. What will happen to the spring when the current is passed through it? J ustify your answer.
(As the currents flow in the same direction through parallel tums, each trum attract each other, as a result the coil contracts)
14) Current flows through a long and thick conductor. The magnetic field produced by the current camying conductor is plotted against the distance from the centre of the conductor. What do you inferfrom the graph?

15) Identify the following curves and name it. The following curves are drawn for three different magnetic materials. Describe the nature of the magnetic materials.

Out of the three, (i)name the curve which reperesents the material usually used formaking Pemanent Magnets.(ii) name the curve which reperesents the material usually used for making Temporary Magnets(electromagnets.)

16)A particle of mass m and charge q movesat right anglesto a uniform magnetic field. Plot a graph showing the variation of the radius of the circular path described by it with the increase in its
(a) charge,(b) kinetic energy, where, in each case other factors rema in constant .J ustify your answer.
17)A charged paricle having a charge q,is moving with a speed v a long the x-axis. It enters a region of space where an electric field Ealong y-axis and a magnetic field Bare both present.

The particle, on emerging from this region, is observed to be moving along the x-axis only. Obtain an expression for the magnitude of B in terms of v and E. Also give the direction of B.
18) A long wire is first bent into a circular coil of one tum and then into a circular coil of sma ller radius having n tums. If the same current passes in both the cases find the ratio of the magnetic field produced at the centers in the two cases.
19)Why is dia magnetism independent of temperature?
20)What is the magnetic field at the centre of the circular loop shown in figure?

21)A toroidal coil has $N=1200$ tums a verage length of core $\mathrm{I}=80 \mathrm{~cm}$; cross sectional area $A=60 \mathrm{~cm}^{2}$;current $I=15 \mathrm{~A}$. Compute B, H, total flux and energy density E.Assume an empty core.

Also compute the results when a bismuth core ($\mathrm{Xm}=-2 \times 10^{-6}$) is used.
\{ Hint: $B=\mu_{0} \mathrm{nl}=2.8274334 \mathrm{mT} ; \mathrm{H}=\mathrm{B} / \mu_{0}=2250 \mathrm{~A} / \mathrm{m}$;
$\left.\varphi=B A=16.964598 \mu \mathrm{~Wb} ; E=1 / 2 \mathrm{BH}=3.180626 \mathrm{~J} / \mathrm{m}^{3}\right\}\{$ When bismuth core is used the above values dec reases slightly due to the diamagnetic material\}
22)Identify the following curve and name it. Explain the following terms on the basis of the curve.
(a) Soft magnetic material material
c) Give one example each for the material
d) one application each for the material
21) An electron and a proton ,moving parallel to each other in the same direction with equal momenta, enter ino a uniform magnetic field, which is at right a ngles to their velocities. Trace their trajectories in the magnetic field.

(Trace the path such that Proton deflects ino the paperand the electron deflects out of the paper.)

