Class XI: Physics

Chapter 8: Gravitation

Chapter Notes

Key Learnings:

1. Newton's law of universal gravitation states that the gravitational force of attraction between any two particles of masses m_{1} and m_{2} separated by a distance r has the magnitude

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Where G, the universal gravitational constant, has the value 6.672 x $10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.
2. From the principle of superposition each force acts independently and uninfluenced by the other bodies. The resultant force F_{R} is then found by vector addition.

$$
F_{R}=F_{1}+F_{2}+\ldots+F_{n}=\sum_{i=1}^{n} F_{i}
$$

2. Acceleration due to gravity: $g=\frac{G M}{r^{2}}$
3. For small heights h above the earth's surface the value of g decreases by a factor (1-2h/R).
4. The gravitational potential energy of two masses separated by a distance r is inversely proportional to r.
5. The potential energy is never positive; it is zero only when the two bodies are infinitely far apart.
6. The gravitational potential energy associated with two particles separated by a distance r is given by

$$
V=-\frac{G m_{1} m_{2}}{r}
$$

Where V is taken to be zero at $r \rightarrow \infty$.
7. The total mechanical energy is the sum of the kinetic and potential energies. The total energy is a constant of motion.
8. If an isolated system consists of a particle of mass mobbing with a speed v in the vicinity of a massive body of mass M, the total mechanical energy of the particle is given by

$$
E=\frac{1}{2} m v^{2}-\frac{G M m}{r}
$$

If m moves in circular orbit of radius a about M, where $M \gg m$, the total energy of the system is

$$
\mathrm{E}=-\frac{\mathrm{GMm}}{2 \mathrm{a}}
$$

9. The escape speed from the surface of the Earth is
$v_{e}=\sqrt{\frac{2 G M_{E}}{R_{E}}}=\sqrt{2 g R_{E}}$
And has a value of $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
10. Kepler's law of planetary motion:
i. The orbit of the planet is elliptical with sun at one of the focus LAW OF ORBITS.
ii. The line joining the planet to the sun sweeps out equal area in equal interval of time - LAW OF AREAS.
iii. The square of the planet's time period of revolution T, is proportional to the cube of semi major axis a.
11. A geostationary satellite moves in a circular orbit in the equatorial plane at an approximate distance of $36,000 \mathrm{~km}$.

Top Formulae:

1. Newton's Law of Gravitation

$$
\mathrm{F}=\frac{\mathrm{Gm} m_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}, \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

2. Acceleration dye to Gravity

$$
\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\frac{4}{3} \pi \mathrm{GR} \rho
$$

3. Variation of g
(a) Altitude (height) effect $g^{\prime}=g\left(1+\frac{h}{R}\right)^{-2}$

$$
\text { If } \mathrm{h} \ll \mathrm{R} \text { then } \quad \mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{2 h}{\mathrm{R}}\right)
$$

(b) Effect of depth $g^{\prime \prime}=\left(1-\frac{d}{R}\right)$
(c) Latitude effect
4. Intensity of Gravitational Field

$$
\overrightarrow{\mathrm{E}}_{\mathrm{g}}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}(-\vec{r})
$$

For earth $\mathrm{E}_{\mathrm{g}}=\mathrm{g}=9.86 \mathrm{~m} / \mathrm{s}^{2}$
5. Gravitational Potential

$$
v_{g}=-\int_{\infty}^{r} \vec{E}_{g} \cdot \overrightarrow{d r}
$$

For points on out side $(r>R)$

$$
v_{g}=-\frac{G M}{r}
$$

For points inside it, $r<R$

$$
v_{g}=-G M\left[\frac{3 R^{2}-r^{2}}{2 R^{3}}\right]
$$

6. Change in Potential Energy (P. E.) on going height h above the surface

$$
\Delta \mathrm{U}_{\mathrm{g}}=\mathrm{mgh} \quad \text { if } \mathrm{h} \ll \mathrm{R}_{\mathrm{e}}
$$

In general $\Delta \mathrm{U}_{\mathrm{g}}=\frac{\mathrm{mgh}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)}$
7. Orbital Velocity of a Satellite

$$
\begin{aligned}
& \frac{m v_{0}^{2}}{r}=\frac{G M m}{r^{2}} \\
& v_{0}=\sqrt{\frac{G M}{R+h}} \quad r=h+R
\end{aligned}
$$

If $h \ll R \quad v_{0}=\sqrt{\frac{G M}{R}}=\sqrt{g R}=8 \mathrm{Km} / \mathrm{sec}$.
8. Velocity of Projection

Loss of K. $\mathrm{E} .=$ gain in P. E .

$$
\begin{aligned}
& \frac{1}{2} m v_{p}^{2}=-\frac{g M m}{(R+h)}-\left(-\frac{G M m}{R}\right) \\
& v_{P}=\left[\frac{2 G M h}{R(R+h)}\right]^{1 / 2}=\left[\frac{2 g h}{1+\frac{h}{R}}\right]^{1 / 2} \quad\left(\because G M=g R^{2}\right)
\end{aligned}
$$

9. Period of Revolution

$$
\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{v}_{0}}=\frac{2 \pi(\mathrm{R}+\mathrm{h})^{3 / 2}}{\mathrm{R} \sqrt{\mathrm{~g}}}
$$

Or $\quad T^{2}=\frac{4 \pi^{2} r^{3}}{G M}$
If $h \ll R \quad T=\frac{2 \pi R^{3 / 2}}{R \sqrt{g}}=1 \frac{1}{2} h r$.
10. Kinetic Energy of Satellite

$$
\text { K.E. }=\frac{\mathrm{GMm}}{2 r}=\frac{1}{2 m v_{0}^{2}}
$$

11. P.E. of Satellite

$$
U=-\frac{G M m}{r}
$$

12. Binding energy of Satellite $=\frac{1}{2} \frac{G M m}{r}$
13. Escape Velocity

$$
\begin{aligned}
& v_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}=\sqrt{2 \mathrm{gR}}=\mathrm{R} \sqrt{\frac{8 \pi \mathrm{Gd}}{3}} \\
& \mathrm{v}_{\mathrm{e}}=\mathrm{v}_{0} \sqrt{2}
\end{aligned}
$$

14. Effective Weight in a Satellite

$$
w=0
$$

Satellite behaves like a free fall body
15. Kepler's Laws for Planetary Motion
(a) Elliptical orbit with sun at one focus
(b) Areal velocity constant $\mathrm{dA} / \mathrm{dt}=$ constant
(c) $\mathrm{T}^{2} \propto \mathrm{r}^{3} \cdot \mathrm{r}=\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) / 2$

