<u>Class XII: Mathematics</u> <u>Chapter : Probability</u> Chapter Notes

Key Concepts

1. The probability that event B will occur if given the knowledge that event A has already occurred is called conditional probability. It is denoted as P(B|A).

2. Conditional probability of B given A has occurred P(B|A) is given by the ratio of number of events favourable to both A and B to number of events favourable to A.

E and F be events of a sample space S of an experiment, then

 P(S|F) = P(F|F)=1

(ii) For any two events A and B of sample space S if F is another event

such that $P(F) \neq 0$ $P((A \cup B) | F) = P(A|F)+P(B|F)-P((A \cap B)|F)$ (iii) P(E'|F) = 1-P(E|F)

4. Two events A and B are independent if and only if the occurrence of A does not depend on the occurrence of B and vice versa.

5. If events A and B are independent then P(B|A) = P(A) and P(A|B)=P(A)

- 6. Three events A,B, C are independent if they are pair wise independent i.e $P(A \cap B) = P(A) . P(B)$, $P(A \cap C) = P(A) . P(C)$, $P(B \cap C) = P(B) . P(C)$
- 7. Three events A,B, C are independent if $P(A \cap B \cap C) = P(A)$. P (B). P (C)

Independence implies pair wise independence, but not conversely.

8. In the case of independent events, event A has no effect on the probability of event B so the conditional probability of event B given event A has already occurred is simply the probability of event B, P(B|A)=P(B).

If E and F are independent events then so are the events

 (i)E' and F
 (ii)E and F'
 (iii)E' and F'

10. If A and B are events such that $B\neq \phi$ then B is said to affect A i) favourably if P(A|B) > P(A)

ii) unfavourably if P(A|B) < P(A)iii) not at all if P(A|B) = P(A).

11. Two events E and F are said to be dependent if they are not independent, i.e. if P(E \cap F) \neq P(E).P (F)

12. The events $E_1, E_2, ..., En$ represent a partition of the sample space S if ______

(1) They are pair wise disjoint,

(2) They are exhaustive and

(3) They have nonzero probabilities.

13. The events E_1 , E_2 ,..., E_n are called hypotheses. The probability $P(E_i)$ is called the priori probability of the hypothesis E_i . The conditional probability $P(E_i|A)$ is called a posteriori probability of the hypothesis E_i

14. Bayes' Theorem is also known as the formula for the probability of "causes".

15. When the value of a variable is the outcome of a random experiment, that variable is a **random variable**.

16. A random variable is a function that associates a real number to each element in the sample space of random experiment.

17. A random variable which can assume only a finite number of values or countably infinite values is called a discrete random variable. In experiment of tossing three coins a random variable X representing number of heads can take values 0, 1, 2, 3.

18. A random variable which can assume all possible values between certain limits is called a continuous random variable. Examples include height, weight etc.

Get the Power of Visual Impact on your side Log on to <u>www.topperlearning.com</u>

19. The probability distribution of a random variable X is the system of numbers

The real numbers $x_1, x_2, ..., x_n$ are the possible values of the random variable X and p_i (i = 1,2,..., n) is the probability of the random variable X taking the value x_i i.e. $P(X = x_i) = p_i$

20. In the probability distribution of x each probability pi is non negative, and sum of all probabilities is equal to 1.

21. Probability distribution of a random variable x can be represented using bar charts.

Χ	1	2	3	4
P(X)	.1	.2	.3	.4
Tabular Penrecentation				

Tabular Representation

Graphical Representation

22. The expected value of a random variable indicates its average or central value.

23. The expected value of a random variable indicates its average or central value. It is a useful summary value of the variable's distribution.

24. Let X be a discrete random variable which takes values x_1 , x_2 , x_3 ,... x_n with probability $p_i = P\{X = x_i\}$, respectively. The mean of X, denoted by μ , is summation pixi

25. Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions :

- (i) There should be a finite number of trials.
- (ii) The trials should be independent.
- (iii) Each trial has exactly two outcomes: success or failure.
- (iv) The probability of success remains the same in each trial.

26. **Binomial distribution** is the discrete probability distribution of the number of successes in a sequence of *n* independent binomial experiments, each of which yields success with probability p.

27. **Bernoulli experiment** is a random experiment whose trials have two outcomes that are mutually exclusive: they are, termed, success and failure.

28. Binomial distribution with n-Bernoulli trials, with the probability of success in each trial as p, is denoted by B (n, p). n and p are called the parameters of the distribution.

29. The random variable X follows the binomial distribution with parameters n and p, we write $XK \sim B(n, p)$. The probability of getting exactly k successes in n trials is given by the probability mass function P (X = k) = ${}^{n}C_{k} q {}^{n-k} p^{k}$

30. Equal means of two probability distributions does not imply same distributions.

Key Formulae

1. $0 \le P(B|A) \le 1$

 If E and F are two events associated with the same sample space of a random experiment, the conditional probability of the event E given that F has occurred, i.e. P (E|F) is given by

$$P(E | F) = \frac{n(E \cap F)}{n(F)} \text{ provided } P(F) \neq 0 \text{ or}$$
$$P(F | E) = \frac{n(E \cap F)}{n(E)} \text{ provided } P(E) \neq 0$$

3. Multiplication Theorem:

(a) For two events Let E and F be two events associated with a sample space S. P (E \cap F) = P (E) P (F|E) = P (F) P (E|F) provided P (E) \neq 0 and P (F) \neq 0.

Get the Power of Visual Impact on your side Log on to <u>www.topperlearning.com</u>

(b) For three events:

If E, F and G are three events of sample space S,

 $P(E \cap F \cap G) = P(E) P(F|E) P(G|(E \cap F)) = P(E) P(F|E) P(G|EF)$

4. Multiplication theorem for independent Events

(i) $P(E \cap F) = P(E)P(F)$

(ii) $P(E \cap F \cap G) = P(E)P(F)P(G)$

5. Let E and F be two events associated with the same random experiment Two events E and F are said to be independent, if

(i) P(F|E) = P(F) provided $P(E) \neq 0$ and (ii) P(E|F) = P(E) provided $P(F) \neq 0$ (iii) $P(E \cap F) = P(E) \cdot P(F)$

6. Occurrence of atleast one of the two events A or B $P(A \cup B) = 1 - P(A')P(B')$

7. A set of events $\mathsf{E}_1,\,\mathsf{E}_2,\,...,\,\mathsf{E}_n$ is said to represent a partition of the sample space S if

 $\begin{array}{l} (a) \ E_i \cap E_j = \varphi, \ i \neq j, \ i, \ j = 1, \ 2, \ 3, \ ..., \ n \\ (b) \ E_1 \cup E_2 \cup E_n = \ S \\ (c) \ P(E_i) > 0 \ for \ all \ i = 1, \ 2, \ ..., \ n. \end{array}$

8. Theorem of Total Probability

Let $\{E_1, E_2,...,E_n\}$ be a partition of the sample space S, and suppose that each of the events $E_1, E_2,..., E_n$ has nonzero probability of occurrence. Let A be any event associated

with S, then

 $P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + ... + P(E_n) P(A|E_n)$ = $\sum_{j=1}^{n} P(E_j) P(A | E_j)$

9. Bayes' Theorem

If E_1 , E_2 ,..., E_n are n non-empty events which constitute a partition of sample space S and

A is any event of nonzero probability, then

$$P(Ei | A) = \frac{P(E_i)P(A | E_i)}{\sum_{j=1}^{n} P(E_j)P(A | E_j)} \text{ for any I = 1,2,3,...n}$$

10.The mean or expected value of a random variable X, denoted by E(X) or μ is defined as

$$\mathsf{E}(\mathsf{X}) = \mu = \sum_{i=1}^{n} x_i p_i$$

11. The variance of the random variable X, denoted by Var (X) or ${\sigma_{\!x}}^2$ is defined as

$$\sigma_x^2 = Var(X) = \sum_{i=1}^n (x_i - \mu)^2 p(x_i) = E(X - \mu)^2$$

Var (X) = E(X²) - [E(X)]²

12. Standard Deviation of random variable X:

$$\sigma_{x} = \sqrt{Var(X)} = \sqrt{\sum_{i=1}^{n} (x_{i} - \mu)^{2} p(x_{i})}$$

13. For Binomial distribution B (n, p), P (X = x) = ${}^{n}C_{x} q {}^{n-x} p^{x}$, x = 0, 1,..., n (q = 1 - p)

14. Mean and Variance of a variable X following Binomial distribution E (X) = μ = np Var (X) = npq Where n is number of trials, p = probability of success q = probability of failures 15. Standard Deviation of a variable X following Binomial distribution

 $\sigma_x = \sqrt{Var(X)} = \sqrt{npq}$

