Class XII: Mathematics Chapter: Probability

Chapter Notes

Key Concepts

1. The probability that event B will occur if given the knowledge that event A has already occurred is called conditional probability. It is denoted as $P(B \mid A)$.
2. Conditional probability of B given A has occurred $P(B \mid A)$ is given by the ratio of number of events favourable to both A and B to number of events favourable to A.
3. E and F be events of a sample space S of an experiment, then
(i). $\mathrm{P}(\mathrm{S} \mid F)=\mathrm{P}(F \mid F)=1$
(ii) For any two events A and B of sample space S if F is another event such that $P(F) \neq 0$

$$
P((A \cup B) \mid F)=P(A \mid F)+P(B \mid F)-P((A \cap B) \mid F)
$$

(iii) $P\left(E^{\prime} \mid F\right)=1-P(E \mid F)$
4. Two events A and B are independent if and only if the occurrence of A does not depend on the occurrence of B and vice versa.
5. If events A and B are independent then $P(B \mid A)=P(A)$ and $P(A \mid B)=P(A)$
6. Three events A, B, C are independent if they are pair wise independent i.e

$$
P(A \cap B)=P(A) \cdot P(B), \quad P(A \cap C)=P(A) \cdot P(C), \quad P(B \cap C)=P(B) \cdot P(C)
$$

7. Three events A, B, C are independent if

$$
P(A \cap B \cap C)=P(A) \cdot P(B) \cdot P(C)
$$

Independence implies pair wise independence, but not conversely.
8. In the case of independent events, event A has no effect on the probability of event B so the conditional probability of event B given event A has already occurred is simply the probability of event $B, P(B \mid A)=P(B)$.
9. If E and F are independent events then so are the events
(i) E^{\prime} and F
(ii)E and F^{\prime}
(iii) E^{\prime} and F^{\prime}
10. If A and B are events such that $B \neq \varphi$ then B is said to affect A
i) favourably if $P(A \mid B)>P(A)$
ii) unfavourably if $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{A})$
iii) not at all if $P(A \mid B)=P(A)$.
11. Two events E and F are said to be dependent if they are not independent, i.e. if $P(E \cap F) \neq P(E) . P(F)$
12. The events E_{1}, E_{2}, \ldots, En represent a partition of the sample space S if

(1) They are pair wise disjoint,
(2) They are exhaustive and
(3) They have nonzero probabilities.
13.The events $E_{1}, E_{2}, \ldots, E_{n}$ are called hypotheses. The probability $P\left(E_{i}\right)$ is called the priori probability of the hypothesis E_{i}. The conditional probability $P\left(E_{i} \mid A\right)$ is called a posteriori probability of the hypothesis E_{i}
14. Bayes' Theorem is also known as the formula for the probability of "causes".
15. When the value of a variable is the outcome of a random experiment, that variable is a random variable.
16. A random variable is a function that associates a real number to each element in the sample space of random experiment.

17. A random variable which can assume only a finite number of values or countably infinite values is called a discrete random variable.
In experiment of tossing three coins a random variable X representing number of heads can take values 0, 1, 2, 3.
18. A random variable which can assume all possible values between certain limits is called a continuous random variable.
Examples include height, weight etc.
19. The probability distribution of a random variable X is the system of numbers

$$
\begin{array}{llllll}
X & : & x_{1} & x_{2} & \ldots . & x_{n} \\
P(X) & : & p_{1} & p_{2} & \ldots . & p_{n}
\end{array}
$$

$$
\text { where } p_{i}>0, \sum_{i=1}^{n} p_{i}=1, i=1,2,3, \ldots, n
$$

The real numbers $x_{1}, x_{2}, \ldots, x_{n}$ are the possible values of the random variable X and $p_{i}(i=1,2, \ldots, n)$ is the probability of the random variable X taking the value x_{i} i.e. $P\left(X=x_{i}\right)=p_{i}$
20. In the probability distribution of x each probability $p i$ is non negative, and sum of all probabilities is equal to 1 .
21. Probability distribution of a random variable \times can be represented using bar charts.

X	1	2	3	4
$\mathbf{P}(\mathrm{X})$.1	.2	.3	.4

Tabular Representation

Graphical Representation
22. The expected value of a random variable indicates its average or central value.
23. The expected value of a random variable indicates its average or central value. It is a useful summary value of the variable's distribution.
24. Let X be a discrete random variable which takes values $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ with probability $p_{i}=P\left\{X=x_{i}\right\}$, respectively. The mean of X, denoted by μ, is summation pixi
25. Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes: success or failure.
(iv) The probability of success remains the same in each trial.
26. Binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent binomial experiments, each of which yields success with probability p.
27. Bernoulli experiment is a random experiment whose trials have two outcomes that are mutually exclusive: they are, termed, success and failure.
28. Binomial distribution with n-Bernoulli trials, with the probability of success in each trial as p, is denoted by $B(n, p)$. n and p are called the parameters of the distribution.
29. The random variable X follows the binomial distribution with parameters n and p, we write $X K \sim \mathrm{~B}(n, p)$. The probability of getting exactly k successes in n trials is given by the probability mass function $P(X=k)={ }^{n} C_{k} q^{n-k} p^{k}$
30. Equal means of two probability distributions does not imply same distributions.

Key Formulae

1. $0 \leq P(B \mid A) \leq 1$
2. If E and F are two events associated with the same sample space of a random experiment, the conditional probability of the event E given that F has occurred, i.e. $P(E \mid F)$ is given by

$$
\begin{aligned}
& P(E \mid F)=\frac{n(E \cap F)}{n(F)} \text { provided } P(F) \neq 0 \text { or } \\
& P(F \mid E)=\frac{n(E \cap F)}{n(E)} \text { provided } P(E) \neq 0
\end{aligned}
$$

3. Multiplication Theorem:

(a) For two events

Let E and F be two events associated with a sample space S.
$P(E \cap F)=P(E) P(F \mid E)=P(F) P(E \mid F)$ provided $P(E) \neq 0$ and $P(F) \neq 0$.
(b) For three events:

If E, F and G are three events of sample space S,

$$
P(E \cap F \cap G)=P(E) P(F \mid E) P(G \mid(E \cap F))=P(E) P(F \mid E) P(G \mid E F)
$$

4. Multiplication theorem for independent Events

(i) $P(E \cap F)=P(E) P(F)$
(ii) $P(E \cap F \cap G)=P(E) P(F) P(G)$
5. Let E and F be two events associated with the same random experiment Two events E and F are said to be independent, if
(i) $P(F \mid E)=P(F)$ provided $P(E) \neq 0$ and
(ii) $P(E \mid F)=P(E)$ provided $P(F) \neq 0$
(iii) $P(E \cap F)=P(E) \cdot P(F)$
6. Occurrence of atleast one of the two events A or B

$$
P(A \cup B)=1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)
$$

7. A set of events $E_{1}, E_{2}, \ldots, E_{n}$ is said to represent a partition of the sample space S if
(a) $E_{i} \cap E_{j}=\phi, i \neq j, i, j=1,2,3, \ldots, n$
(b) $E_{1} \cup E_{2} \cup E_{n}=S$
(c) $P\left(E_{i}\right)>0$ for all $i=1,2, \ldots, n$.

8. Theorem of Total Probability

Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be a partition of the sample space S, and suppose that each of the events $E_{1}, E_{2}, \ldots, E_{n}$ has nonzero probability of occurrence. Let A be any event associated with S, then
$P(A)=P\left(E_{1}\right) P\left(A \mid E_{1}\right)+P\left(E_{2}\right) P\left(A \mid E_{2}\right)+\ldots+P\left(E_{n}\right) P\left(A \mid E_{n}\right)$
$=\sum_{j=1}^{n} P\left(E_{j}\right) P\left(A \mid E_{j}\right)$

9. Bayes' Theorem

If $E_{1}, E_{2}, \ldots, E_{n}$ are n non-empty events which constitute a partition of sample space S and
A is any event of nonzero probability, then
$P(E i \mid A)=\frac{P\left(E_{i}\right) P\left(A \mid E_{i}\right)}{\sum_{j=1}^{n} P\left(E_{j}\right) P\left(A \mid E_{j}\right)}$ for any $I=1,2,3, \ldots n$
10.The mean or expected value of a random variable X, denoted by $E(X)$ or μ is defined as
$E(X)=\mu=\sum_{i=1}^{n} x_{i} p_{i}$
11. The variance of the random variable X, denoted by $\operatorname{Var}(X)$ or $\sigma_{x}{ }^{2}$ is defined as
$\sigma_{\mathrm{x}}{ }^{2}=\operatorname{Var}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{E}(\mathrm{X}-\mu)^{2}$
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
12. Standard Deviation of random variable X :
$\sigma_{\mathrm{x}}=\sqrt{\operatorname{Var}(\mathrm{X})}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)}$
13. For Binomial distribution $B(n, p)$, $P(X=x)={ }^{n} C_{x} q^{n-x} p^{x}, x=0,1, \ldots, n(q=1-p)$
14. Mean and Variance of a variable X following Binomial distribution $E(X)=\mu=n p$
$\operatorname{Var}(X)=n p q$
Where n is number of trials, $\mathrm{p}=$ probability of success $\mathrm{q}=$ probability of failures
15. Standard Deviation of a variable X following Binomial distribution

$$
\sigma_{x}=\sqrt{\operatorname{Var}(X)}=\sqrt{n p q}
$$

