Class XII

Mathematics

Chapter:1

Relations and Functions Points to Remember

Key Concepts

1. A relation R between two non empty sets A and B is a subset of their Cartesian Product $A \times B$. If $A=B$ then relation R on A is a subset of $A \times A$
2. If (a, b) belongs to R, then a is related to b, and written as $a R$ If (a, $b)$ does not belongs to R then $a R^{\prime} b$.
3. Let R be a relation from A to B.

Then Domain of $R \subset A$ and Range of $R \subset B$ co domain is either set B or any of its superset or subset containing range of R
4. A relation R in a set A is called empty relation, if no element of A is related to any element of A, i.e., $R=\phi \subset A \times A$.
5. A relation R in a set A is called universal relation, if each element of A is related to every element of A, i.e., $R=A \times A$.
6. A relation R in a set A is called
a. Reflexive, if $(a, a) \in R$, for every $a \in A$,
b. Symmetric, if $\left(a_{1}, a_{2}\right) \in R$ implies that $\left(a_{2}, a_{1}\right) \in R$, for all $a_{1}, a_{2} \in A$.
c. Transitive, if $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ implies that $\left(a_{1}, a_{3}\right) \in R$, or all $a_{1}, a_{2}, a_{3} \in A$.
7. A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
8. The empty relation R on a non-empty set X (i.e. a R b is never true) is not an equivalence relation, because although it is vacuously symmetric and transitive, it is not reflexive (except when X is also empty)
9. Given an arbitrary equivalence relation R in a set X, R divides X into mutually disjoint subsets S_{i} called partitions or subdivisions of X satisfying:

- All elements of S_{i} are related to each other, for all i
- No element of S_{i} is related to S_{j}, if $\mathrm{i} \neq \mathrm{j}$
- $\bigcup_{i=1}^{n} S_{\mathrm{j}}=\mathrm{X}$ and $S_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\phi$, if $\mathrm{i} \neq \mathrm{j}$
- The subsets S_{j} are called Equivalence classes.

10. A function from a non empty set A to another non empty set B is a correspondence or a rule which associates every element of A to a unique element of B written as
$f: A \rightarrow B$ s.t $f(x)=y$ for all $x \in A, y \in B$. All functions are relations but converse is not true.
11. If $f: A \rightarrow B$ is a function then set A is the domain, set B is co-domain and set $\{f(x): x \in A\}$ is the range of f. Range is a subset of codomain.
12. $f: A \rightarrow B$ is one-to-one if

For all $x, y \in A f(x)=f(y) \Rightarrow x=y$ or $x \neq y \Rightarrow f(x) \neq f(y)$
A one- one function is known as injection or an Injective Function. Otherwise, f is called many-one.
13. $f: A \rightarrow B$ is an onto function, if for each $b \in B$ there is atleast one $a \in A$ such that $f(a)=b$
i.e if every element in B is the image of some element in A, f is onto.
14. A function which is both one-one and onto is called a bijective function or a bijection.
15. For an onto function range $=$ co-domain.
16. A one - one function defined from a finite set to itself is always onto but if the set is infinite then it is not the case.
17. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions. Then the composition of f and g, denoted by gof is defined as the function gof: $A \rightarrow C$ given by

Composition of f and g is written as gof and not fog
gof is defined if the range of $f \subseteq$ domain of f and fog is defined if range of $\mathrm{g} \subseteq$ domain of f
18. Composition of functions is not commutative in general fog $(x) \neq \operatorname{gof}(x)$.Composition is associative
If $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h: Z \rightarrow S$ are functions then
$h o(g \circ f)=(h \circ g) \circ f$
19. A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=\mathrm{I}_{\mathrm{X}}$ and fog $=\mathrm{I}_{\mathrm{Y}}$. The function g is called the inverse of f and is denoted by f^{-1}
20. If f is invertible, then f must be one-one and onto and conversely, if f is one- one and onto, then f must be invertible.
21. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are one-one and onto then gof: $\mathrm{A} \rightarrow \mathrm{C}$ is also one-one and onto. But If g o f is one -one then only f is one -one g may or may not be one-one. If g of is onto then g is onto f may or may not be onto.
22. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two invertible functions. Then gof is also Invertible with (gof) ${ }^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
23. If $f: R \rightarrow R$ is invertible,
$f(x)=y$, then $f^{-1}(y)=x$ and $\left(f^{-1}\right)^{-1}$ is the function f itself.
24. A binary operation * on a set A is a function from $A X A$ to A.
25.Addition, subtraction and multiplication are binary operations on R, the set of real numbers. Division is not binary on R, however, division is a binary operation on $\mathrm{R}-\{0\}$, the set of non-zero real numbers
26.A binary operation $*$ on the set X is called commutative, if $a * b=$ $b * a$, for every $a, b \in X$
27.A binary operation $*$ on the set X is called associative, if $a *(b * c)=(a * b) * c$, for every $a, b, c \in X$
28. An element $e \in A$ is called an identity of A with respect to *, if for each $a \in A, a^{*} e=a=e^{*} a$.
The identity element of $\left(A,{ }^{*}\right)$ if it exists, is unique.
29. Given a binary operation $*$ from $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$, with the identity element e in A, an element $a \in A$ is said to be invertible with respect to the operation $*$, if there exists an element b in A such that $a * b=e=b * a$, then b is called the inverse of a and is denoted by a^{-1}.
30.If the operation table is symmetric about the diagonal line then, the operation is commutative.

The operation * is commutative.
31. Addition ' + ' and multiplication '.' on N , the set of natural numbers are binary operations But subtraction '-' and division are not since (4, 5) $=4-5=-1 \notin N$ and $4 / 5=.8 \notin N$

