<u>Class XII</u> <u>Mathematics</u> <u>Chapter:2</u> <u>Inverse Trigonometric Functions</u> <u>Points to Remember</u>

Key Concepts

- 1. Inverse trigonometric functions map real numbers back to angles.
- 2. Inverse of sine function denoted by \sin^{-1} or arc sin(x) is defined on

[-1,1] and range could be any of the intervals

 $\left[\frac{-3\pi}{2},\frac{-\pi}{2}\right],\left[\frac{-\pi}{2},\frac{\pi}{2}\right],\left[\frac{\pi}{2},\frac{3\pi}{2}\right].$

3. The branch of sin⁻¹ function with range $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is the principal branch.

So sin⁻¹: $[-1,1] \rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

- The graph of sin⁻¹ x is obtained from the graph of sine x by interchanging the x and y axes
- 5. Graph of the inverse function is the mirror image (i.e reflection) of the original function along the line y = x.
- 6. Inverse of cosine function denoted by \cos^{-1} or $\operatorname{arc} \cos(x)$ is defined in

[-1,1] and range could be any of the intervals [- π ,0], [0, π],[π ,2 π].

So, \cos^{-1} : $[-1,1] \rightarrow [0,\pi]$.

7. The branch of tan⁻¹ function with range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is the principal

branch. So \tan^{-1} : $\mathsf{R} \to \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

8. The principal branch of $\operatorname{cosec}^{-1} x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ -{0}.

$$\operatorname{cosec}^{-1} x : \operatorname{R-}(-1,1) \to \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}.$$

9. The principal branch of sec⁻¹ x is $[0,\pi]$ -{ $\frac{\pi}{2}$ }.

sec⁻¹ x :R-(-1,1) →[0,π]-{ $\frac{\pi}{2}$ }.

- 10. \cot^{-1} is defined as a function with domain R and range as any of the intervals $(-\pi, 0)$, $(0, \pi)$, $(\pi, 2\pi)$. The principal branch is $(0, \pi)$. So \cot^{-1} : R $\rightarrow (0, \pi)$
- 11. The value of an inverse trigonometric function which lies in the range of principal branch is called the principal value of the inverse trigonometric functions.
- 12. Inverse of a function is not equal to the reciprocal of the function.
- 13.Properties of inverse trigonometric functions are valid only on the principal value branches of corresponding inverse functions or wherever the functions are defined.

2

Key Formulae

Functions	Domain	Range (Principal Value Branches)
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	[0, π]
$y = cosec^{-1} x$	R - (-1,1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
$y = \sec^{-1} x$	R - (-1, 1)	$\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$
$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1} x$	R	(0, π)

1. Domain and range of Various inverse trigonometric Functions

2. Self Adjusting property

 $sin(sin^{-1}x) = x$; $sin^{-1}(sin x) = x$

 $\cos(\cos^{-1} x) = x; \cos^{-1}(\cos x) = x$

 $\tan(\tan^{-1} x) = x; \tan^{-1}(\tan x) = x$

Holds for all other five trigonometric ratios as well.

3. Reciprocal Relations

$$\sin^{-1}\left(\frac{1}{x}\right) = \operatorname{cosec}^{-1} x, \ x \ge 1 \text{ or } x \le -1$$
$$\cos^{-1}\left(\frac{1}{x}\right) = \operatorname{sec}^{-1} x, \ x \ge 1 \text{ or } x \le -1$$
$$\tan^{-1}\left(\frac{1}{x}\right) = \operatorname{sec}^{-1} x, \ x \ge 0$$

Get the Power of Visual Impact on your side

Log on to <u>www.topperlearning.com</u>

4. Even and Odd Functions

- (i) $\sin^{-1}(-x) = -\sin^{-1}(x), x \in [-1,1]$ (ii) $\tan^{-1}(-x) = -\tan^{-1}(x), x \in \mathbb{R}$ (iii) $\csc^{-1}(-x) = -\csc^{-1}x, |x| \ge 1$
- (iv) $\cos^{-1}(-x) = \pi \cos^{-1} x, x \in [-1, 1]$ (v) $\sec^{-1}(-x) = \pi - \sec^{-1} x, |x| \ge 1$ (vi) $\cot^{-1}(-x) = \pi - \cot^{-1} x, x \in R$

5. Complementary Relations

(i)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

(ii) $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}$
(iii) $\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2}, |x| \ge 1$

6. Sum and Difference Formuale

(i)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right), xy < 1$$

(ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right), xy > -1$$

(iii)
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}[x\sqrt{1-y^2} + y\sqrt{1-x^2}]$$

(iv) $\sin^{-1}x - \sin^{-1}y = \sin^{-1}[x\sqrt{1-y^2} - y\sqrt{1-x^2}]$
(v) $\cos^{-1}x + \cos^{-1}y = \cos^{-1}[xy - \sqrt{1-x^2}\sqrt{1-y^2}]$
(vi) $\cos^{-1}x - \cos^{-1}y = \cos^{-1}[xy + \sqrt{1-x^2}\sqrt{1-y^2}]$
(vii) $\cot^{-1}x + \cot^{-1}y = \cot^{-1}\left(\frac{xy-1}{x+y}\right)$

Get the Power of Visual Impact on your side Log on to <u>www.topperlearning.com</u>

(viii)
$$\cot^{-1}x - \cot^{-1}y = \cot^{-1}\left(\frac{xy+1}{y-x}\right)$$

7. Double Angle Formuale

$$\begin{array}{l} \text{(i) } 2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}, \left|x\right| \leq 1 \\ \text{(ii) } 2\tan^{-1}x = \cos^{-1}\frac{1-x^2}{1+x^2}, x \geq 0 \\ \text{(iii) } 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}, -1 < x < 1 \\ \text{(iv) } 2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2}), \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \text{(v) } 2\cos^{-1}x = \sin^{-1}(2x\sqrt{1-x^2}), \frac{1}{\sqrt{2}} \leq x \leq 1 \end{array}$$

8. Conversion Properties

(i)
$$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$$

= $\tan^{-1} \frac{x}{x\sqrt{1 - x^2}} = \cot^{-1} \frac{\sqrt{1 - x^2}}{x}$
(ii) $\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$
= $\tan^{-1} \frac{\sqrt{1 - x^2}}{x} = \cot^{-1} \frac{x}{\sqrt{1 - x^2}}$

(iii)
$$\tan^{-1}x = \sin^{-1} = \frac{x}{\sqrt{1 - x^2}}$$

= $\cos^{-1}\frac{x}{\sqrt{1 + x^2}} = \sec^2\sqrt{1 + x^2}$

Get the Power of Visual Impact on your side Log on to <u>www.topperlearning.com</u>

$$= \csc ec^{-1} \frac{\sqrt{1+x^2}}{x}$$

Properties are valid only on the values of x for which the inverse functions are defined.