## Class XII

## Mathematics

## Chapter:5

## Continuity and Differentiability

## Chapter Notes

## Key Definitions

1. A function $f(x)$ is said to be continuous at a point $c$ if, $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)$
2. A real function $f$ is said to be continuous if it is continuous at every point in the domain of $f$.
3. If $f$ and $g$ are real valued functions such that ( $f \circ g$ ) is defined at $c$. If $g$ is continuous at $c$ and if $f$ is continuous at $g(c)$, then ( $f \circ g$ ) is continuous at c.
4. A function $f$ is differentiable at a point $c$ if $L H D=$ RHD

$$
\text { i.e } \lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}
$$

5. Chain Rule of Differentiation: If $f$ is a composite function of two functions $u$ and $v$ such that $f=$ vou and $t=u(x)$ if both $\frac{d t}{d x}$ and $\frac{d v}{d x}$, exists then, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}$
6. Logarithm of $a$ to base $b$ is xi.e $\log _{b} a=x$ if $b^{x}=a \quad$ where $b>1$ be $a$ real number. Logarithm of $a$ to base $b$ is denoted by $\log _{b} a$.
7. Functions of the form $x=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{g}(\mathrm{t})$ are parametric functions.
8. Rolle's Theorem: If $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on $(a, b)$ such that $f(a)=f(b)$, then there exists some $c$ in $(a, b)$ such that $f^{\prime}(c)=0$
9. Mean Value Theorem: If $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b] \&$ differentiable on $(a, b)$. Then there exists some $c$ in $(a, b)$ such that $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(b)-f(a)}{b-a}$

## Key Concepts

1. A function is continuous at $x=c$ if the function is defined at $x=c$ and the value of the function at $x=c$ equals the limit of the function at $x=$ c.
2. If function $f$ is not continuous at $c$, then $f$ is discontinuous at $c$ and $c$ is called the point of discontinuity of $f$.
3. Every polynomial function is continuous.
4. Greatest integer function, $[x]$ is not continuous at the integral values of $x$.
5. Every rational function is continuous.
6. Algebra of Continuous Functions

Let $f$ and $g$ be two real functions continuous at a real number $c$, then
(1) $f+g$ is continuous at $x=c$
(2) $f-g$ is continuous at $x=c$
(3) f. $g$ is continuous at $x=c$
(4) $\left(\frac{f}{g}\right)$ is continuous at $x=c$, (provided $\left.g(c) \neq 0\right)$.
7. Derivative of a function $f$ with respect to $x$ is $f^{\prime}(x)$ which is given by
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
8. If a function $f$ is differentiable at a point $c$, then it is also continuous at that point.
9. Every differentiable function is continuous but converse is not true.
10. Chain Rule is used to differentiate composites of functions.

## 11. Algebra of Derivatives:

If $u \& v$ are two functions which are differentiable, then
(i) $(u \pm v)^{\prime}=u ' \pm v^{\prime}$ (Sum and DifferenceFormula)
(ii) (uv)' $=u^{\prime} v+u v^{\prime} \quad$ (Product rule)
(iii) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ (Quotient rule)

## 12.Implicit Functions

If it is not possible to "separate" the variables $x \& y$ then function $f$ is known as implicit function.
13. Exponential function: $A$ function of the form $y=f(x)=b^{x}$ where base $\mathrm{b}>1$
(1) Domain of the exponential function is $R$, the set of all real numbers.
(2) The point $(0,1)$ is always on the graph of the exponential function
(3) Exponential function is ever increasing

## 14.Properties of Logarithmic functions

(i)Domain of $\log$ function is $\mathrm{R}^{+}$.
(ii) The log function is ever increasing
(iii) For $x$ very near to zero, the value of $\log x$ can be made lesser than any given real number.
15.Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x)=[u(x)]^{v(x)}$. Here both $f(x)$ and $u(x)$ need to be positive.

## 16.Logarithmic Differentiation

$y=a^{x}$
Taking logarithm on both sides
$\log y=\log a^{x}$.
Using property of logarithms
$\log y=x \log a$
Now differentiating the implicit function

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=\log a \\
& \frac{d y}{d x}=y \log a=a^{x} \log a
\end{aligned}
$$

17. A relation between variables $x$ and $y$ expressed in the form $x=f(t)$ and $y=g(t)$ is the parametric form with $t$ as the parameter .Parametric equation of parabola $y^{2}=4 a x$ is $x=a t^{2}, y=2 a t$

## 18.Parametric Differentiation:

Differentiation of the functions of the form $x=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{g}(\mathrm{t})$ $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$
19.If $y=f(x)$ and $\frac{d y}{d x}=f^{\prime}(x)$ and if $f^{\prime}(x)$ is differentiable then $\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}$ or $f^{\prime \prime}(x)$ is the second order derivative of $y$ w.r.t $x$

## Top Formulae

1. Derivative of a function at a point

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

2. Properties of Logarithms

$$
\begin{aligned}
& \log (x y)=\log x+\log y \\
& \log \left(\frac{x}{y}\right)=\log x-\log y \\
& \log \left(x^{y}\right)=y \log x \\
& \log _{a} x=\frac{\log _{b} x}{\log _{b} a}
\end{aligned}
$$

## 3.Derivatives of Functions

- $\frac{d}{d x} x^{n}=n x^{n-1}$
- $\frac{d}{d x}(\sin x)=\cos x$
- $\frac{d}{d x}(\cos x)=-\sin x$
- $\frac{d}{d x}(\tan x)=\sec ^{2} x$
- $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
- $\frac{d}{d x}(\sec x)=\sec x \tan x$
- $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
- $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
- $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$
- $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$
- $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{x \sqrt{x^{2}-1}}$
- $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- $\frac{d}{d x}(\log x)=\frac{1}{x}$

